Biscayne Bay Minimum Flows and Levels

Introduction

South Florida Water Management District 2003 Minimum Flows and Levels Priority List and Schedule for Establishment 12/16/03

12/16/03					
Region	Priority Water Bodies	Year Established			
Lower East	Surface Water:				
Coast	Biscayne Bay South	2004			
	Biscayne Bay North and Central	2005			
	Biscayne Bay Manatee Bay, Barnes and Card	2005			
	Sound	2005			
	Florida Bay	2007			
	Loxahatchee River Tributaries	2005			
	Lake Okeechobee****				
	Ground Waters:	2004			
	Southern Coastal Biscayne Aquifer				
Lower West	Surface Waters:				
Coast	Estero Ba	2006			
	Ground Waters:				
	Water Table Aquifer	2006			
Kissimmee	Surface Waters:				
Basin	Lake Istokpoga (Highlands County)	2005			
	Kissimmee River	2006			
	Lake Kissimmee (Osceola County)	2006			
	Cypress Lake (Osceola County)	2006			
	Lake Hatchineha (Osceola County)	2006			
	Lake Tohopekaliga/Shingle Creek (Osceola County)	2006			
	East Lake Tohopekaliga/Boggy Creek (Osceola	2006			
	County)*	2006			
	Alligator Lake (Osceola County)	2006			
	Lake Jackson (Osceola County)	2006			
	Lake Rosalie (Polk County)	2006			
	Lake Pierce (Polk County)	2006			
	Lake Marian (Osceola County)	2006			
	Fish Lake (Osceola County)	2008			
	Lake Butler Chain of Lakes (Orange County)				
	Ground Water:				
	Kissimmee Basin Floridan Aquifer				

Biscayne Bay Minimum Flows and Levels

Legal and Policy Background

Minimum Flows and Levels

- Point at which further withdrawals cause "significant harm" to water resources or ecology of the area
- Water resources functions include fish and wildlife, freshwater storage and supply, and water quality protection
- May provide for non-consumptive uses, including recreation & navigation
- Based on best available information
- Periodically evaluated and updated, as needed

MFL Establishment Considerations & Exclusions

- Shall consider changes and structural alterations to hydrology
- Shall consider constraints imposed by changes and structural alterations on hydrology
- Determine whether significant harm caused by withdrawals
- May determine that setting MFL based on historical condition is not appropriate
 - Technical feasibility?
 - Economic feasibility?
 - Cause adverse environmental or hydrologic impacts?

Minimum Flows and Levels Recovery and Prevention Strategy

- Prevent falling below MFL
- Achieve recovery of MFL "as soon as practicable"
- Phased strategy to provide for existing and projected reasonable-beneficial uses
- Integrate into regional water supply plans

Examples of Recovery and Prevention Strategies

- Water resource and water supply development (freshwater storage, conveyance enhancements, alternative water supply, conservation)
- Regulation/Water Shortage
 - Consumptive Use Permit Conditions
 - Water Shortage Triggers
- Operations
- Resource monitoring and research

Rulemaking Process

- Rule Development
- Scientific Peer Review
- Notice of Rulemaking
 - Point of Entry for Challenge
- Comment Period/JAPC Review
- Public Adoption Hearing (Governing Board)
- File Rule with State

MFL Development Process

- Identify appropriate water resource functions
- Identify key harm indicators
- Identify baseline conditions of water resources - "considerations & exclusions"
- Identify technical relationship between water resource impacts & changing hydrologic conditions
- Identify point at which significant harm occurs due to changing hydrologic conditions

Water Supply and Resource Protection Tools in Chapter 373

- Consumptive use permitting-harm
- Minimum flows and levels
 - significant harm
- Water shortage-serious harm
- Water reservations-protection of fish and wildlife

"Harm" Definition

- Temporary loss of water resource functions that takes a period of one to two years of average rainfall conditions to recover
- Results from change in surface or groundwater hydrology
- Defined in consumptive use permit rules

"Significant Harm" Definition

- A loss of specific water resource functions that takes multiple years to recover
- Results from a change in surface water or ground water hydrology
- Defined in Chapter 40E-8, with linkage to water use permit and water shortage rules

"Serious Harm" Definition

- Long-term loss of water resource functions
- Resulting from a change in surfce or ground water hydrology
- Addressed in Water Shortage Plan

Figure 1: Conceptual Relationship Among the Harm, Serious Harm and Significant Harm Standards

		Water Resource Protection Standards	OBSERVED IMPACTS
Water levels/flow decreasing	Consumptive	NO HARM	Normal Permitted Operation/
		in-10 level of certainty)	
	Phase I Water Shortage Phase II Water Shortage	HARM	Temporary loss of water resource functions taking 1 to 2 years to recover
Drought severity	— MINIMUM FLOWS & LEVEL	s ———	Water resource functions require
increasing	Phase III Water Shortage	SIGNIFICANT HARM	multiple years to recover
	Phase IV Water Shortage	SERIOUS HARM	Long term or Permanent loss of water resource functions

Biscayne Bay Minimum Flows and Levels

Resource Functions

Regions of Biscayne Bay

Snake Creek/Oleta River

North

Miami River

North Central

South Central

South

Biscayne National Park

- Largest marine park
- Unique resources
- 500,000+ visitors/year

Biscayne Bay Coastal Wetlands **Project**

sfymd.gov

Watershed Considerations

- Flood control
- Water supply
- Water quality

Biscayne Bay Minimum Flows and Levels

Technical
Discussion Group

Technical Discussion Group -Views on Bay Freshwater Management

- Salinity variations affect multiple species of flora and fauna
- Salinity variations stress Bay fauna
- Salinity variations have contributed to the loss of near-shore mesohaline (salinity is 5-18 ppt) habitat

Technical Discussion Group - Recommendation

Protect existing near-shore salinity until restoration of mesohaline zone can be accomplished

(restoration = increased production of pink shrimp, grey snapper, snook, redfish and seatrout)

Review and Analysis of Existing Available Data and Literature

Review and Analysis of Existing Available Data and Literature - Documentation

- Freshwater Flow and Ecological Relationships in Biscayne Bay
- Seagrasses, Associated Fauna and Faunal Habitat Requirements Documentation and Analysis

Existing Available Data and Literature

Documents are located at:

http://www.siwmd.gov/org/wsd/mil/biscaynebay/project_doc.htm

Biscayne Bay Minimum Flows and Levels

Proposed
Salinity/Habitat
Indicator

Freshwater flows into and strongly affects the western parts of Biscayne Bay

September Isohalines (15-35 ppt)

May Isohalines (30-37 ppt)

Short List of Indicator Species				
Scientific Name	Common Name			
Halodule wrightii	Shoal grass			
Ruppia maritima	Wigeon grass			
Callinectes sapidus	Blue crab			
Centropomus undecimalis	Common snook			
Crassostrea virginica	American oyster			
Crocodylus acutus	American crocodile			
Farfantepenaeus duorarum	Pink shrimp			
Megalops atlanticus	Tarpon			

- 42 + potentialspecies identified
- 8 somewhat abundant

Filtering criteria:

- Reside in Biscayne Bay
- Dependent on freshwater input
- SufficientlyDocumented

Approximate Salinity Preference Ranges

Valued Ecosystem Component (VEC)

- Element of biological community
- Important to local human population or national profile
- Of scientific concern
- Important for evaluation

VEC Assumptions for MFL

- Health should be strongly tied to salinity
- What's good for the VEC is good for the Bay's ecosystem
- Should be relatively easy to monitor status
- Loss indicates significant ecological changes

Biodiversity Benefits

- Maintains ecosystem processes
- Enhances resilience
- Affects society

Habitat Diversity Linkages

- Ault et al. 2001; NOAA
- Critical linkage to nearshore

Faunal Preferences

- Species on short list prefer low to moderate salinity
- Juvenile pink shrimp found closer to shore in mixed grass/shoal grass
- Amphipods prefer shoal grass
- Copepods more diverse in shoal grass

VEC Selection

Species	Monitoring Ease	Abundance, Importance	Affect on Population
Shoal grass	√	\checkmark	\checkmark
Wigeon grass	√		\checkmark
Blue crab			\checkmark
Common snook			\checkmark
American oyster	√		\checkmark
American crocodile	√		
Pink shrimp		\checkmark	
Tarpon			√

Seagrass abundant in SC Bay

- 80-90% turtle grass
- 10-20% shoal, manatee & wigeon grasses

Shoal grass

- Mapped within 1 km of shore
- Most abundant nearby freshwater output

Shoal grass response in study area

- Lirman & Cropper (2003) models
- Shoal grass productivity increases with decreased salinity
- Competes better

Shoal grass response at Black Point

- M-D data collected nearshore
- Shoal grass cover associated with canal flows (C-1)

MFL Recommendations for South Central Biscayne Bay

- Maintain salinity gradient
- Use shoal grass as primary VEC
- Use 7 other species as secondary indicators